Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioelectron Med ; 7(1): 20, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34963501

RESUMO

BACKGROUND: Effectiveness of robotic therapy and transcranial direct current stimulation is conventionally assessed with clinical measures. Robotic metrics may be more objective and sensitive for measuring the efficacy of interventions on stroke survivor's motor recovery. This study investigated if robotic metrics detect a difference in outcomes, not seen in clinical measures, in a study of transcranial direct current stimulation (tDCS) preceding robotic therapy. Impact of impairment severity on intervention response was also analyzed to explore optimization of outcomes by targeting patient sub-groups. METHODS: This 2020 study analyzed data from a double-blind, sham-controlled, randomized multi-center trial conducted from 2012 to 2016, including a six-month follow-up. 82 volunteers with single chronic ischemic stroke and right hemiparesis received anodal tDCS or sham stimulation, prior to robotic therapy. Robotic therapy involved 1024 repetitions, alternating shoulder-elbow and wrist robots, for a total of 36 sessions. Shoulder-elbow and wrist kinematic and kinetic metrics were collected at admission, discharge, and follow-up. RESULTS: No difference was detected between the tDCS or sham stimulation groups in the analysis of robotic shoulder-elbow or wrist metrics. Significant improvements in all metrics were found for the combined group analysis. Novel wrist data showed smoothness significantly improved (P < ·001) while submovement number trended down, overlap increased, and interpeak interval decreased. Post-hoc analysis showed only patients with severe impairment demonstrated a significant difference in kinematics, greater for patients receiving sham stimulation. CONCLUSIONS: Robotic data confirmed results of clinical measures, showing intensive robotic therapy is beneficial, but no additional gain from tDCS. Patients with severe impairment did not benefit from the combined intervention. Wrist submovement characteristics showed a delayed pattern of motor recovery compared to the shoulder-elbow, relevant to intensive intervention-related recovery of upper extremity function in chronic stroke. TRIAL REGISTRATION: http://www.clinicaltrials.gov . Actual study start date September 2012. First registered on 15 November 2012. Retrospectively registered. Unique identifiers: NCT01726673 and NCT03562663 .

2.
Bioelectron Med ; 7(1): 21, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34963502

RESUMO

BACKGROUND: A detailed sensorimotor evaluation is essential in planning effective, individualized therapy post-stroke. Robotic kinematic assay may offer better accuracy and resolution to understand stroke recovery. Here we investigate the added value of distal wrist measurement to a proximal robotic kinematic assay to improve its correlation with clinical upper extremity measures in chronic stroke. Secondly, we compare linear and nonlinear regression models. METHODS: Data was sourced from a multicenter randomized controlled trial conducted from 2012 to 2016, investigating the combined effect of robotic therapy and transcranial direct current stimulation (tDCS). 24 kinematic metrics were derived from 4 shoulder-elbow tasks and 35 metrics from 3 wrist and forearm evaluation tasks. A correlation-based feature selection was performed, keeping only features substantially correlated with the target attribute (R > 0.5.) Nonlinear models took the form of a multilayer perceptron neural network: one hidden layer and one linear output. RESULTS: Shoulder-elbow metrics showed a significant correlation with the Fugl Meyer Assessment (upper extremity, FMA-UE), with a R = 0.82 (P < 0.001) for the linear model and R = 0.88 (P < 0.001) for the nonlinear model. Similarly, a high correlation was found for wrist kinematics and the FMA-UE (R = 0.91 (P < 0.001) and R = 0.92 (P < 0.001) for the linear and nonlinear model respectively). The combined analysis produced a correlation of R = 0.91 (P < 0.001) for the linear model and R = 0.91 (P < 0.001) for the nonlinear model. CONCLUSIONS: Distal wrist kinematics were highly correlated to clinical outcomes, warranting future investigation to explore our nonlinear wrist model with acute or subacute stroke populations. TRIAL REGISTRATION: http://www.clinicaltrials.gov . Actual study start date September 2012. First registered on 15 November 2012. Retrospectively registered. Unique identifiers: NCT01726673 and NCT03562663 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...